The ATIC Long Duration Balloon Project

T. G. Guzik1, J.H. Adams2, H.S. Ahn3, G. Bashindzhagyan4, J. Chang5, M. Christl2, A. R. Fazely6, O. Ganel3, D. Granger1, R. Gunasingha6, Y. J. Han7, J. B. Isbert1, H. J. Kim7, K. C. Kim3, S. K. Kim7, E. Kouznetsov4, M. Panasyuk4, A. Panov4, B. Price1, G. Samsonov4, W. K. H. Schmidt5, E. S. Seo3, R. Sina3, N. Sokolskaya4, M. Stewart1, A. Voronin4, J. Z. Wang3, J. P. Wefel1, J. Wu3, V. Zatsepin4,

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
2NASA Marshall Space Flight Center, Huntsville, AL USA
3Institute for Physical Science & Technology, University of Maryland, College Park, MD, USA
4Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia
5Max Planck Institut für Aeronomie, Katlinberg - Lindau, Germany
6Department of Physics, Southern University, Baton Rouge, LA, USA
7Department of Physics, Seoul National University, Seoul, South Korea

ABSTRACT

Long Duration Balloon (LDB) scientific experiments, launched to circumnavigate the south pole over Antarctica, have particular advantages compared to Shuttle or other Low Earth Orbit (LEO) missions in terms of cost, weight, scientific "duty factor" and work force development. The Advanced Thin Ionization Calorimeter (ATIC) cosmic ray astrophysics experiment is a good example of a university-based project that takes full advantage of current LDB capability. The ATIC experiment is currently being prepared for its first LDB science flight that will investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 10^{10} to 10^{14} eV. The instrument is built around a fully active, Bismuth Germanate (BGO) ionization calorimeter to measure the energy deposited by the cascades formed by particles interacting in a thick carbon target. A highly segmented silicon matrix, located above the target, provides good incident charge resolution plus rejection of the "backscattered" particles from the interaction. Trajectory reconstruction is based on the cascade profile in the BGO calorimeter, plus information from the three scintillator hodoscope layers in the target section above it. A full evaluation of the experiment was performed during a test flight occurring between 28 December 2000 and 13 January 2001 where ATIC was carried to an altitude of ~37 km above Antarctica by a ~850,000 m3 helium filled balloon for one circumnavigation of the continent. All systems behaved well, the detectors performed as expected, >43 Gbytes of engineering and cosmic ray event data was returned and these data are now undergoing preliminary data analysis. During the coming 2002-2003 ATIC science flight we will be attempting two circumnavigations of Antarctica or ~30 days of continuous science data collection in the near-space environment of LDB float altitudes.

INTRODUCTION

The ATIC project includes an international collaboration of researchers who are focused on investigating the energy spectra of Galactic Cosmic Rays (GCR) in the ultra-high-energy ($>10^{12}$ eV) regime. Cosmic rays are the product of energetic processes in the galaxy, and their interactions with matter and fields are the source of much of the diffuse gamma-ray, x-ray, and radio emission that we observe. In addition, these high energy particles are the only sample of matter from distant regions of the galaxy, and possibly elsewhere in the Universe, that can be directly observed by experiments in the Solar System. Understanding cosmic ray origin and acceleration, and how they propagate, is a fundamental problem that has a major impact on our understanding of the universe.

Cosmic ray matter contains all natural elements from Hydrogen to beyond Nickel. All species have similar energy spectral shapes, power laws beyond ~10 GeV/nucleon, where the effects of heliospheric modulation become small. This power-law describes the spectra over an enormous energy range, to $>10^{14}$ eV. All-particle
measurements (where the species charge can not be distinguished), principally from ground-based air shower arrays, have traced the spectrum to the highest energies, $\sim 10^{15}$ eV. From these measurements, it has been known for some time that the spectrum is somewhat steeper above 10^{19} eV than it is below 10^{14} eV. Whether and how this structure, the famous "knee", is related to the mechanisms of acceleration, propagation, and confinement is one of the major current questions in particle astrophysics.

Figure 1 shows the summary of high energy data from the NRC report "Opportunities in Cosmic-Ray Physics and Astrophysics" (Gaisser et al., 1995) as a function of magnetic rigidity for groups of individual elements. (Here "Fe" refers to $17 \leq Z \leq 28$.) It was expected that, if all species come from the same sources and have the same propagation history in the galaxy, then the spectra at high energy (above ~ 100 GV) should have the same shape! This is clearly not the case as inspection of Figure 1 shows, and several surprising results emerge from the figure. First, the most abundant species, H and He appear to have energy spectra that are different; the flux of He relative to H increasing with energy. Above ~ 50 TeV, the proton events appear to be less abundant, and this led, originally, to a report of a possible bend, or break, in the proton spectrum. (Even earlier, a break at 2 TeV had been suggested.) The heavier nuclei, viewed in charge groups (e.g., C+N+O), show spectra that appear less steep than Helium, and extrapolated (naively) to higher energy, the overall composition of cosmic rays becomes dominated by heavy nuclei. However, a range of power law exponents can be encompassed by the dispersion in the heavy nuclei measurements shown, making such extrapolation problematic. The results in Figure 1 come from a variety of experiments, performed over many years, utilizing various techniques, each covering a limited energy interval. Taken together, the data extend up to $\sim 10^{14}$ eV for protons and to lower kinetic energies for the heavier species. However, the agreement among the experiments is not as good as might be hoped, and the statistical uncertainties at the high energy end remain large. It is this need for better measurements to understand these spectra that is the experimental rationale for the ATIC investigation.

Concurrently, (over the past 15 years), theorists have developed an attractive and convincing theory of diffusive shock acceleration by supernova blast waves that naturally accounts for the essential observed features of most of the relativistic particles in the galaxy. In shock-acceleration, particles pick up a small increment of energy each time they cross the shock boundary in a random-walking (diffusing) process. The maximum energy accessible in a given situation depends on the rate at which the particles diffuse back and forth across the shock and on how long the acceleration mechanism acts. For a supernova (SN) shock, the available acceleration time is limited by the time taken for the blast wave to propagate outward into the ISM and to weaken to the point that it is no longer an efficient accelerator. In the most commonly used form of the theory, the characteristic, “limiting” energy is $E = Z \cdot 10^{14}$ eV, where Z is the particle charge (e.g. Lagage and Cesarsky, 1983). This implies that the composition would begin to change in the energy region around 10^{14} eV, since this is the limiting energy for protons. However, changing the assumed magnetic field topology or field strength or the characteristics of the medium into which the SNR is expanding (Ellison et al., 1994) results in changing the predicted maximum energy for the accelerated particles.

Fig. 1: Compilation of energy spectra for groups of elements
Figure 2 shows updated spectra for H and He, with the flux again multiplied by $E^{2.75}$ including recent results from JACEE (Asakimori et al., 1998) and RUNJOB (Shibata, 1996, Apanasenko et al., 1999). Comparison to Figure 1 shows that the apparent fall off at the highest energies for protons is no longer prominent, due, mainly, to refined data from the JACEE group, who report spectra consistent with single power laws. However, Cherry et al., 1999, using a maximum likelihood analysis, show that a spectral break above ~40 TeV cannot be ruled out. The statistical significance of the data is just not high enough to draw a conclusion one way or the other. Other analyses (e.g. Zatsepin and Sololoskaya, 1999; Grigorov and Tolstaya, 1999) still favor a spectral break, so this remains an unanswered question.

The spectral fits shown in Figure 2 still favor a difference in the spectral index for Hydrogen and Helium at the two sigma level, index change = 0.12±0.06. A difference in the spectral indices would, almost certainly, signify two different types of sources or acceleration mechanisms for H and He (e.g. Biermann, 1993; Zatsepin, 1995). However, RUNJOB recently reported H and He spectra that show the same index (Apanaseuko et al 2001). What is needed to understand the spectral shapes is a set of measurements covering the full energy range with a single instrument of demonstrated capability, and this is a major goal of the ATIC investigation.

In summary, the objectives for ATIC are: 1) Measure the H & He energy spectrum from $\sim 10^{10}$ to $\sim 10^{14}$ eV with a single instrument, 2) Confirm (refute) the spectral differences between protons and helium, 3) Determine if the proton spectrum shows any feature above a TeV, 4) Accurately measure the H/He ratio as a function of energy, and 5) Determine if the spectra of heavy nuclei have the same indices.

THE ATIC EXPERIMENT PAYLOAD

The only practical method of energy determination over a broad energy range for $Z \geq 1$ seems to be ionization calorimetry. In an ionization calorimeter, a particle’s energy is deposited inside a medium via a cascade of nuclear and electromagnetic interactions. Figure 3 shows a schematic of the ATIC experiment with simulation of a high energy proton interacting and generating such a cascade. At each step of the cascade, the energy of the primary particle is sub-divided among many secondary particles. The area under the curve of ionization energy versus depth in the medium provides a measure of the particle energy. In principal, an infinitely deep calorimeter provides energy resolution limited only by the statistical nature of the cascade process and the measuring technique. The energy resolution of a finite calorimeter, however, depends on the fluctuations in the energy transferred to the pions, particularly in the first interaction. Practical calorimeters for balloon applications must necessarily be limited in thickness, in order to have a reasonable cross sectional area, i.e. geometrical factor, and a "flyable" weight.

For ATIC, we have developed an advanced calorimeter based upon fully active Bismuth-Germanate (BGO) scintillating crystals (1.12 cm per r.l.) following a 30 cm carbon target (25 cm per r.l.). The incident particle interacts in the carbon, but the majority of the shower develops in the BGO. For our LDB flights from
McMurdo, the calorimeter shown in Figure 4 consists of eight layers of 2.5 cm thick BGO crystals giving a calorimeter depth of 17.9 r.l. vertical. A layer includes 40 BGO crystals of dimensions 2.5 cm x 2.5 cm x 25 cm, with each crystal viewed by a Hamamatsu R5611 photomultiplier tube.

The instrument must also determine the charge of the incident particle and measure its trajectory through the apparatus. At the top of the instrument (Figure 3) is a silicon detector to determine the charge of the incident particle. In a calorimeter, there is always some "backsplash" of particles emitted into the backward hemisphere that can confuse the charge measurement. To resolve this problem, the Silicon Matrix-detector (Figure 5) includes 4,480 2 cm x 1.5 cm "pixels" mounted on offset ladders, which allows separation of the backscatter from the incident particle. The total active area of the Silicon Matrix is 0.95 m x 1.05 m. In addition, crossed plastic scintillator strip hodoscope layers are located at the top, bottom and within the carbon target (S1, S2, and S3 in Figure 3) to provide triggering (geometry definition), auxiliary charge information as well as a measure of the trajectory of the incident cosmic ray, combined with the location of the shower core from the calorimeter. Each hodoscope is of similar construction (Figure 6) though the length and number of strips varies with the position of the layer in the instrument. For S1, 84 strips of Bicron BC-408 of dimensions 2 cm x 1 cm x 88.2 cm are used, while S2 includes 35 strips 74.2 cm long and S3 has 24 strips that are 52.4 cm long. As seen in Figure 6, each strip has a Hamamatsu R5611 on each end of each strip. Finally, 16 channel, 16 bit ADC application-specific integrated circuit (ASIC) CR-1 chips (Adams, et al., 1999) are used for the Silicon Matrix readout while ASIC chips, based on the design used for the ACE mission, including 16 input channels, two “trigger” output signals as well as 12 bit digitized pulse heights is used for the BGO and hodoscope readout.

ATIC has been designed specifically as a LDB payload, meeting stringent weight requirements and launch conditions. The total weight of ATIC is about 3,400 pounds and while the structure is capable of withstanding the loads associated with launch, parachute deployment and landing, is highly modular. This modular design is easy to break down in the field and the resulting components can then be loaded onto a variety of recovery platforms. Once tuned for flight ATIC generates about 250 kbps of data on average which can be downlinked during the first 10 to 20 hours of flight while the payload is in line-of-sight (LOS). Once out of LOS telemetry is limited to the 4 – 6 kbps TDRSS range. Thus, ATIC includes a 70 GB disk for on-board data recording, a priority queue for preferentially transmitting important housekeeping / monitoring data and failure detection / recovery software for semi-autonomous operations. The payload is contained in a Kevlar pressure vessel that maintains a ~8 psi environment for the instrument and utilizes photovoltaic arrays to supply the 250 Watts of power needed during flight.

THE ATIC TEST FLIGHT

All LDB payloads are required to perform a short “test” flight to assure system performance and our group was anticipating this flight for Fall, 2000 at Ft. Sumner and then the Antarctica LDB flight the following year. Circumstances, however, allowed NASA to invite ATIC to move its schedule forward and perform the “test” flight from McMurdo, Antarctica during the 2000 – 2001 season. After
several months of intense preparation (at LSU, the National Scientific Balloon Facility (NSBF) in Palestine, TX, and on the flight line in Williams Field, Antarctica) ATIC was launched for the first time on 12/28/2000 at 04:25 UTC. The rollout of the payload from the integration hanger at Williams Field to the launch pad is shown in Figure 7.

The launch went smoothly, the payload reached altitude within a couple of hours and remained within LOS for almost 24 hours. During this LOS period we were able to check instrument performance and set the trigger thresholds. Nominal science taking began once the payload left LOS on 12/29/00 at 03:54 UTC and continued for the next ~350 hours as the experiment circumnavigated the Antarctic continent. The ATIC balloon path, as recorded by the NSBF is shown in Figure 8.

During the ATIC flight, the payload altitude was 37 ± 1.5 km, the instrument temperature stayed in the range 20 – 30°C and the internal pressure remained at ~8 psi with no detectable leakage. Over the course of the flight ATIC recorded over 43 Gbytes of data including 26,100,000 cosmic ray triggers, 1,300,000 calibration records, 742,000 housekeeping records, 18,300 rate records and > 90% of the detector channels operated nominally. The instrument was powered off on 1/12/01 at 20:33 UTC in preparation for flight termination which occurred 1/13/01 at 03:56 UTC. The payload landed upright, largely intact and was essentially fully recovered during two Twin Otter flights to the landing site on 1/23/01 and 1/25/01.

In general the payload worked well during the test flight. ATIC operated for more than 14 days with little ground intervention collecting data on high energy cosmic ray events. We were able to monitor the instrument health and performance during the full flight via TDRSS and LOS telemetry as well as affect the experiment behavior when necessary with uplinked commands. In addition, the Kevlar pressure vessel worked flawlessly.

However, we did have our share of problems during the flight. For example: A few data files were corrupted during flight; Some command records in the flight data were invalid and we had a problem with receiving command acknowledgements; A software defect allowed the GPS clock to occasionally hang the Detector Control Unit (DCU) computer stack, causing us to remove the GPS clock for the 2000 flight; Only a couple of the rate counters appear to be valid; One side of one layer of S2 failed to function shortly before launch and one side of one layer of S1 failed two days into the flight. Since the recovered ATIC components were returned to the US in April 2001, LSU has spent most of 2001 & 2002 understanding and fixing the issues found during the test flight, modifying the payload to incorporate “lessons learned” to enhance performance / recoverability and refurbishing ATIC to prepare for its science flight the 2002-2003 Antarctica season.

Analysis of the ATIC “test” flight data has been used to examine the performance of the instrument and to obtain some preliminary results. One critical parameter to be examined is the energy dependence of the trigger, so that any such effects can be removed from the measured cosmic ray flux energy spectrum. Figures 9 and 10 show some preliminary results on the ATIC trigger. Figure 9 shows the Gated MT (Master Trigger) count rate versus mission days. The initial data collecting period has a count rate of about 2000 and lasts from about the time of LOS loss to about day 7. The lighter bands at a count rate of about 1800 and 1500 are due to dead time effects. The cyclic variation in the count rate has a time period a little more than a day and is likely due to the “daily” variation in the balloon altitude. Over the course of the mission we increased the trigger thresholds three times. These increases correspond to the decreased Gated MT count between days ~8 – 11 (MT ~1500), days 11 – 14 (MT ~750) and day 15 (MT ~250). During day 14 a different trigger configuration was used to collect some detector performance data. In Figure 10, the all particle energy deposit (in the calorimeter) spectrum corresponding to each of the four trigger thresholds can be seen. The top curve was determined from data taken during period 1.
(i.e. days 1 to 7), the next lower curve during period 2 (i.e. days 8 to 11), and so on. From Figure 10 we see that
the effect of the energy dependence in the trigger varies according to the threshold setting, but by about 100 GeV
total energy deposit the trigger appears to be close to 100% efficient. In fact, between ~100 GeV and ~5 TeV total
energy deposit very reasonable power law spectra are apparent. However, much beyond ~5 TeV total energy
deposit low statistics become a problem.

Another critical measurement made during the test flight was the charge resolution capability of the Silicon
Matrix detector in the presence of shower “backscatter”. Figure 11 shows the charge histogram for the Li to Ne
region using the “hit” pixels in a single Silicon Matrix layer. The “hit” pixel was determined by back tracing the
particle trajectory determined from the shower core in the BGO calorimeter. In this case primary elements such as
C and O as well as H and He (not shown) are well resolved, but the lower abundant secondary species (i.e. Be, B,
N, F) are much more difficult to see. Due to the multi-layer construction of the Matrix, a portion of the particle
trajectories (~15%) will actually pass through two silicon pixels on two different layers. By requiring charge
consistency in both pixels a more accurate measurement of the incident particle charge can be obtained. The
resulting “Double Layer” charge histogram for the Li to Ne region is shown as Figure 12 and as can be seen all
elements are now well resolved. Similar improvement in charge resolution was also found for H, He as well for
elements Ne through Fe. Charge calibrations for the S1 hodoscope layer, located directly under the Silicon Matrix,
are still underway, but once complete we will be able to use S1 for charge consistency checks for all particles
passing through the Matrix.

Finally, Figure 13 shows the He / H elemental ratio versus total energy deposit obtained from the ATIC test
flight data. A similar plot but for the CNO group / H ratio is shown in Figure 14. In both cases the energy

![Fig. 9: The MT count rate](image)

![Fig. 10: The energy deposit spectrum](image)

![Fig. 11: Silicon Matrix single layer charge histogram](image)

![Fig. 12: Silicon Matrix double layer charge histogram](image)
dependence of the trigger is clearly seen for total energy deposits less than ~100 GeV. Also in both cases the ratio is more or less constant between 100 GeV and up to ~1 TeV total energy deposit. The data is also consistent with a constant ratio for energies > 1 TeV, but much beyond 3 – 4 TeV total energy deposit low statistics do not allow hard conclusions to be drawn. Further time aloft by the ATIC instrument will allow more data to be gathered at these highest energies.

CONCLUSIONS

The ATIC experiment is designed to study the charge composition and energy spectra of primary cosmic rays over the energy range from about 10^{10} to 10^{14} eV. The instrument uses a BGO ionization calorimeter to determine incident particle energy and trajectory through the detector stack, a highly segmented silicon matrix detector to determine cosmic ray charge and plastic scintillator hodoscopes to provide the instrument trigger as well as supplementary information on particle charge and trajectory. In addition, the payload has been designed to take into account the weight, recovery and operational constraints associated with Long Duration Balloon (LDB) flights. On 12/28/2000 ATIC was launched from Williams Field in Antarctica for a ~15 day test LDB flight. The experiment performed well during this test, but some problems were encountered. Nevertheless, the recovered data provided important information on the trigger energy dependence, charge resolution and other performance measures. In addition, preliminary He / H and CNO / He ratios appear to be energy independent over the range 100 Gev to ~1 TeV total energy deposit. During 2001 and 2002 the recovered components of ATIC were refurbished, modified to incorporate lessons learned during the test flight and assembled in preparation for the 2002 science flight. Pre-deployment integration occurred at NSBF in Palestine, TX during July, 2002 and the instrument was shipped to Antarctica. Currently, ATIC is being prepared for flight at Williams Field and is expected to be flight ready by 12/5/2002. If conditions permit we will attempt to circumnavigate the Antarctic continent twice this season providing ~30 days of science data.

ACKNOWLEDGMENTS

The ATIC effort is supported at LSU by NASA Grants NAG5-5064 and NAG5-5306 and the Louisiana Board of Regents; at UMD by NASA grant NAG5-5155; at SUBR by NASA grant; at NRL/MSFC under NASA grant; at MSU by the Russian Foundation for Basic Research Grant 99-02-16246 and the Russian Ministry of Science and Technology; at MPI underand at SNU by We are also grateful for the support and professionalism of the NASA National Scientific Balloon Facility personnel and to the NSF Office of Polar Programs for their logistical support during the ATIC 2000-2001 Antarctica campaign.
REFERENCES

Cherry, M. L., et al., the JACEE Collaboration, Where Is the Bend in the Cosmic Ray Proton Spectrum?, *Proc. 26th Int. Cosmic Ray Conf. (Salt Lake City)*, 3, 187, 1999

E-mail address of T.G. Guzik guzik@phunds.phys.lsu.edu

Manuscript received 30 November 2002; revised , accepted